BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure.
نویسندگان
چکیده
BACKGROUND During peritoneal dialysis (PD), mesothelial cells (MC) undergo an epithelial-to-mesenchymal transition (EMT), and this process is associated with peritoneal membrane (PM) damage. Bone morphogenic protein-7 (BMP-7) antagonizes transforming growth factor (TGF)-beta1, modulates EMT and protects against fibrosis. Herein, we analysed the modulating role of BMP-7 on EMT of MC in vitro and its protective effects in a rat PD model. METHODS Epitheliod or non-epitheliod MC were analysed for the expression of BMP-7, TGF-beta1, activated Smads, epithelial cadherin (E-cadherin), collagen I, alpha smooth muscle cell actin (alpha-SMA) and vascular endothelial growth factor (VEGF) using standard procedures. Rats were daily instilled with PD fluid with or without BMP-7 during 5 weeks. Histological analyses were carried out in parietal peritoneum. Fibrosis was quantified with van Gieson or Masson's trichrome staining. Vasculature, activated macrophages and invading MC were quantified by immunofluorescence analysis. Quantification of infiltrating leukocytes and MC density in liver imprints was performed by May-Grünwald-Giemsa staining. Hyaluronic acid levels were determined by ELISA. RESULTS MC constitutively expressed BMP-7, and its expression was downregulated during EMT. Treatment with recombinant BMP-7 resulted in blockade of TGF-beta1-induced EMT of MC. We provide evidence of a Smad-dependent mechanism for the blockade of EMT. Exposure of rat peritoneum to PD fluid resulted in inflammatory and regenerative responses, invasion of the compact zone by MC, fibrosis and angiogenesis. Administration of BMP-7 decreased the number of invading MC and reduced fibrosis and angiogenesis. In contrast, BMP-7 had no effect on inflammatory and regenerative responses, suggesting that these are EMT-independent, and probably upstream, processes. CONCLUSIONS Data point to a balance between BMP-7 and TGF-beta1 in the control of EMT and indicate that blockade of EMT may be a therapeutic approach to ameliorate peritoneal membrane damage during PD.
منابع مشابه
مقایسه سلولهای مزانشیمی مغز استخوان و سلولهای مزوتلیومی مایع سروزی ازنظر میزان بیان مولکولهای کمپلکس سازگاری نسجی اصلی (MHC)
Abstract Background: Mesothelium is composed of a single layer of mesothelial cells attached to a thin basement membrane supported by subserosal connective tissue it plays an important role in homeostasis, wound healing, fluid transport and inflammation. The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of perito...
متن کاملHGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium.
Over time, peritoneal dialysis results in functional and structural alterations of the peritoneal membrane, but the underlying mechanisms and whether these changes are reversible are not completely understood. Here, we studied the effects of high levels of glucose, which are found in the dialysate, on human peritoneal mesothelial cells (HPMCs). We found that high concentrations of glucose induc...
متن کاملEx vivo reversal of in vivo transdifferentiation in mesothelial cells grown from peritoneal dialysate effluents.
BACKGROUND During peritoneal dialysis (PD), epithelial-mesenchymal transition (EMT) is likely involved in aberrant healing and progressive peritoneal fibrosis. Recently, EMT of the kidney was actively reversed into the opposite direction, into mesenchymal-epithelial transition (MET), by treatment with bone morphogenic protein-7 (BMP-7). In this study, the potential for ex vivo interconversion o...
متن کاملMechanisms of Epithelial-Mesenchymal Transition of Peritoneal Mesothelial Cells During Peritoneal Dialysis
A growing body of evidence indicates that epithelial-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMC) may play an important role in the development and progression of peritoneal fibrosis during long-term peritoneal dialysis (PD) leading to failure of peritoneal membrane function. Here, we review our own observations and those of others on the mechanisms of EMT of HPMC a...
متن کاملA pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis.
In patients undergoing peritoneal dialysis (PD), chronic exposure to nonphysiologic PD fluids elicits low-grade peritoneal inflammation, leading to fibrosis and angiogenesis. Phenotype conversion of mesothelial cells into myofibroblasts, the so-called mesothelial-to-mesenchymal transition (MMT), significantly contributes to the peritoneal dysfunction related to PD. A number of factors have been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 25 4 شماره
صفحات -
تاریخ انتشار 2010